Smart Cities for Parliamentarians

Dr. Beth Coleman
City as Platform lab, University of Waterloo
City as Platform lab: Civic Engagement in the Data Society

In an age of smart technology, big data, and the concomitant threat of a surveillance society, how do we understand the citizen's right to the city and how that right is manifested?

We work to frame a contemporary *right to the city.*
• sensing the environment
 traffic lights, smart thermostat, or cell phone

• reporting real-time data
 machine to machine (M2M) environment
Data Publics Schematic
@DYLANKAMOSG
you could have said that as well:
my I think you are being so
got out of my life.

I BRUSSELAIR
The Naked City
New Babylon
Paris Monumental et Métropolitain
Amsterdam Real-Time
Every City is a Smart City
Civic Data Mapping

Frequent Noise Disruption and Average Traffic Density by NYC Neighborhood

Legend
- Bike Routes:
 - nyc_bike_routes_052013_9k
 - Unknown
 - Unknown
 - Greenway/Multi-use path
 - Greenway, On St stripped
 - Greenway, signed
 - On street stripped lane
 - Striped, Signed
 - Striped, Signed
 - On-Street signed route
 - Link
 - Stairs

Bike Lane Violations Density
- Bike Lane Violation Citation Density
 - 96 - 4,039
 - 4,040 - 5,674
 - 5,675 - 7,398
 - 7,599 - 10,003
 - 10,004 - 13,369
 - 13,370 - 17,793
 - 17,794 - 24,525

Source: Community Health Survey, 2006
BREATHING CITY
Manhattan's at Work and Home population by hour
12 am
1. Critical & informed position on smart technology

2. Open data & open door policy with civic sector

3. Data Sovereignty Consortium
Why Jakarta Floods

With 13 rivers flowing through the city, it is important to understand how each flooding factor influences flood risk.

Climate change

40% of Jakarta is below sea level and has a mean tidal range of 1.98m. Extreme events such as the 2014 flood are more frequent.

High tides

There is a maximum range of 1.94m between high tide and low tide. High tides at low tide coincide with maximum tides and cause extreme flooding (i.e., in 2007 when 1/4 of Jakarta flooded).

Land subsidence

Land subsidence may have the largest influence on future flood risk. 40% of Jakarta is sinking 3-10mm/year because of excessive groundwater extraction. Many industries, companies, and developers extract groundwater illegally.

Drained delta

Most of Jakarta was once a wetland plant that has since been drained and covered with surfaces that don’t absorb water such as roads and housing.

Garbage

Urban waste within rivers and neighborhoods render black floodplains and other city infrastructure needed to prevent flooding.

Jakarta waste = 2,000 tons per day

Reservoirs

Reservoirs and dams are vital for flood protection during the rainy season and water storage during the dry season. At the time of the Dutch there were 80 reservoirs. Now there are only 25 reservoirs and dams.

Bogor Regency

Bogor City

Depok City

Depok City

Tangerang Regency

Tangerang City

Bekasi District

Bekasi City

DKI Jakarta

85% of reservoirs and dams are cropped, so they have been turned into areas for housing.

Water runoff from Jakarta

Land use change from forest or plantation to urban areas—some of which are built illegally—means that rainwater is not absorbed into the soil and flows directly into streams.

Water runoff from Bogor

Land use change from forest or plantation to urban areas—some of which are built illegally—means that rainwater is not absorbed into the soil and flows directly into streams.

Water runoff from Depok

Depok’s population is growing rapidly as people in Jakarta look for more affordable housing. 90% of Depok residents are Jakarta workers. However, many of these natural levees have been altered to accommodate urbanization.

5 million people have no clean water access or supply

x17 GBC Stadium

in 7 hours

x7,100

50 km in 10 days

area of Bogor

38 km

2000

2009
MAKING A CIVIC SMART CITY

DESIGNING FOR PUBLIC VALUE AND CIVIC PARTICIPATION

WRITTEN BY
ERIC GORDON
BETH COLEMAN
JOHN HARLOW
MELISSA TENG
LINDSAY MEANING

No. 05 2018
Thank You